

United States Patent [19]

Chang et al.

Patent Number: [11]

5,650,199

Date of Patent: [45]

Jul. 22, 1997

[54] METHOD OF MAKING A MULTILAYER ELECTRONIC COMPONENT WITH INTER-LAYER CONDUCTOR CONNECTION UTILIZING A CONDUCTIVE VIA FORMING

[75] Inventors: Daniel H. Chang, Rancho Santa Fe;

Arthur C. McAdams, Escondido;

Xiangming Li, San Diego, all of Calif.

[73] Assignee: AEM, Inc., San Diego, Calif.

[21] Appl. No.: 562,158

[22] Filed: Nov. 22, 1995

Int. Cl.⁶ B05D 3/04; B05D 5/12 [51]

U.S. Cl. 427/33; 427/97; 156/628.1; 216/17; 216/18; 216/39

427/333, 407.1, 419.2; 156/628.1; 216/17, 18, 39, 83

[56]

References Cited

U.S. PATENT DOCUMENTS

3,798,059	3/1974	Astle et al 117/212
4,322,698	3/1982	Takahashi et al 333/184
4,543,553	9/1985	Takatsuki et al 336/83
4,731,297		Takaya 428/553
5,032,815	7/1991	Kobayashi et al 336/83

5,206,620 4/1993 Watamabe et al. 336/84

OTHER PUBLICATIONS

Miles Trainer Engineering Report, vol. I, Xerox Electro-Optical Systems, Apr. 22, 1981.

Primary Examiner-Shrive Beck Assistant Examiner-Brian K. Talbot Attorney, Agent, or Firm-Baker, Maxham, Jester & Meador

ABSTRACT

A multilayered electronic component created by a wet process, wherein a ceramic base is imprinted with an electrode and an interlayer via is formed on top of it by introducing a via pattern printed in ink that is incompatible with a layer of wet ceramic slurry coating placed on top of the electrode and the via pattern. The incompatibility leads to a physical-chemical reaction that removes ceramic material away from the top of the via pattern by diffusing ceramic materials contained in a colloidal suspension forming a via-through hole. After the wet ceramic slurry is dried, it surrounds the via-through hole and the imprinted via pattern. Then a new electrode layer is imprinted on top of the dried ceramic coating. The new electrode layer completes an electrically conductive path formed from the bottom-most electrode layer, to the via pattern, and then terminating at the new electrode layer on top.

14 Claims, 1 Drawing Sheet

